流式细胞术 (Flow Cytometry)

张特 生物医药研究院

主要内容

- 1. 概述
- 2. 原理
- 3. 流式实验3部曲
- 4. 应用举例

1. 概述

1.1 什么是流式细胞术?

流式细胞术就是对于处在<mark>快速直线流动</mark>状态中的<mark>细胞或生物颗粒</mark>进行多参数的、快速的<mark>定量</mark> 分析和分选的技术。

1.2 FCM特点:

◆小: 直径为0.2~150µm的单细胞悬液或微粒

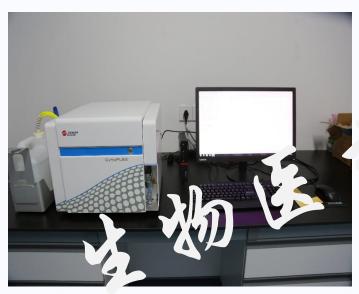
◆快:快速,一般检测1000-5000个细胞/秒,大型机可达每秒上万个细胞

◆多:同时,多参数

1.3 FCM检测范围:

细胞结构

- •细胞大小
- 颗粒度
- 表面面积
- DNA含量及细胞周期
- RNA含量
- 蛋白质含量


细胞功能

- 细胞表面/胞浆/核对特异性抗原
- 细胞活性
- 细胞内细胞因子
- 酶活性
- 激素结合位点
- 细胞受体

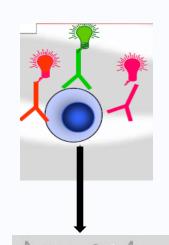
1.4 仪器简介

主要有分析型和分选型。

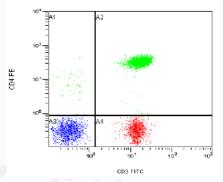
生产商:美国的BD公司、Beckman Coulter公司、ABI公司、Union Biometrica公司;英国的Apogee公司;德国的Partec公司、Merck Millipore公司。

CytoFLEX(流式分析)

MoFlo XDP (流式分选)

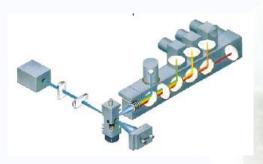

发展方向:

- (1) 分析型: 外形小, 功能强大, 光学系统和液流系统更稳定, 软件更易于操作
- (2)分选型:配置越来越复杂,可检测和分选不同类型的细胞,仪器越来越灵敏,分选速度越来越快。



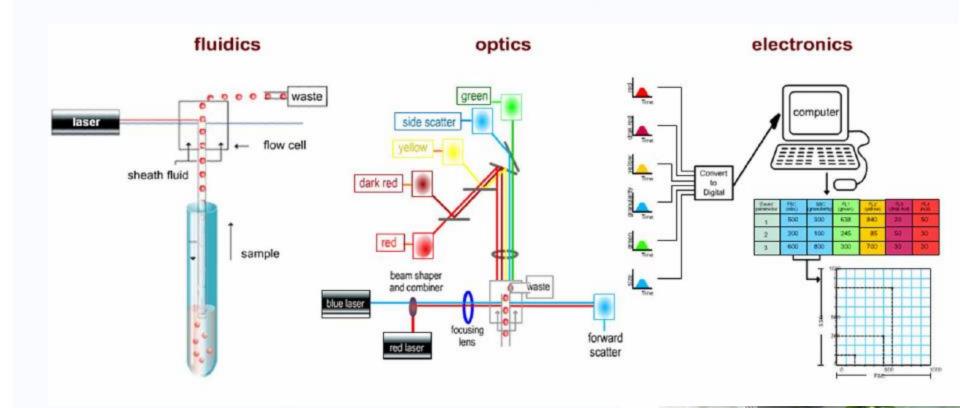
2. 流式细胞术原理

2.1 工作原理

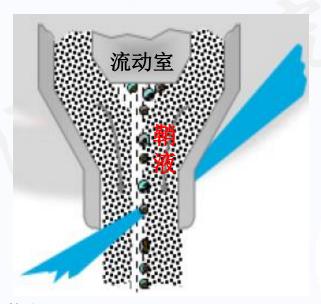

细胞标记荧光

通过信号处理系统 转换为数字信号, 得到散点图、直方 图,并得到百分数 ,荧光强度等统计 结果。

激光照射到 单个细胞上 ,产生光学 信号



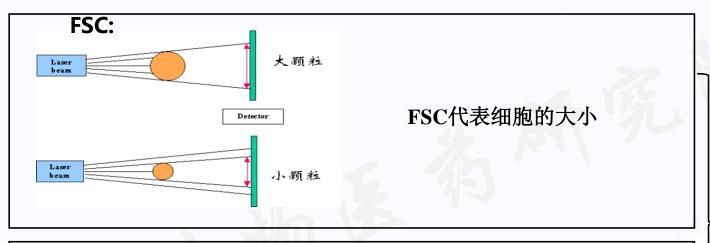
通过滤光片分光 ,PMT转换为电 信号


2.2 流式细胞仪的组成:

液流系统+光学系统+电子系统

2.2.1 液流系统

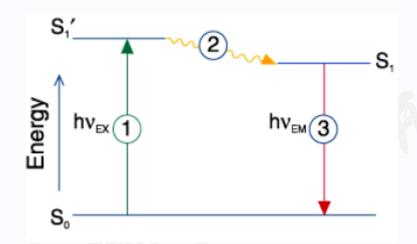
- ① **鞘液:** 在高压下形成一个柱形液流,细胞从液流的中心流入,这样,液体就像"鞘"一样包在样品外面。**通过提高鞘液的流速可以提高细胞分析和分选的速度。**
- ② **单细胞悬液:** 密度1* 105~7个/ml, 大多数仪器是在50~300μm大小的孔径中, 将细胞悬液 注射进入鞘液中。由于鞘液的作用, 待测细胞被限制在液流的轴线上。---流体动力学聚焦



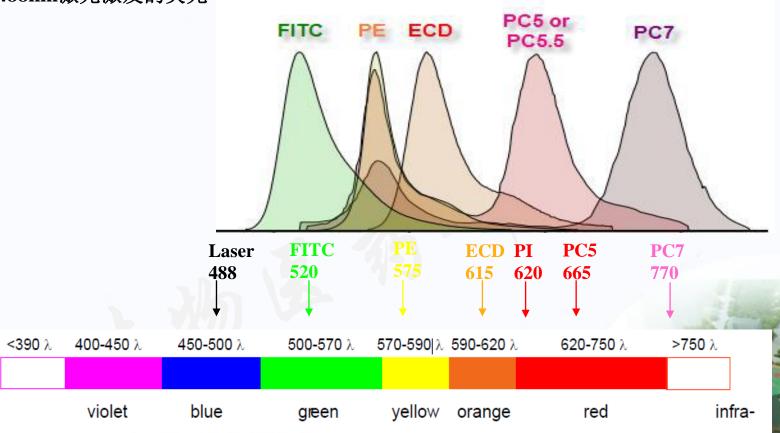
激光

2.2.2 光学系统

① 激光:作为光源,照射细胞,产生"前向散射光信号"(FSC)和"侧向散射光信号"(SSC)。

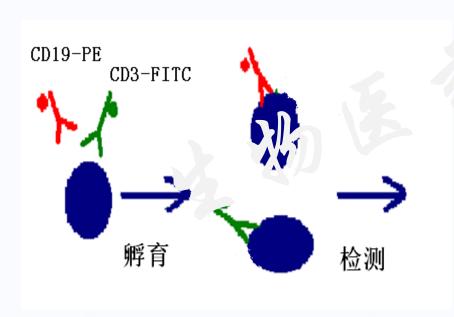

散射光分析: 从非均一的细 胞群体中鉴定 出某些亚群

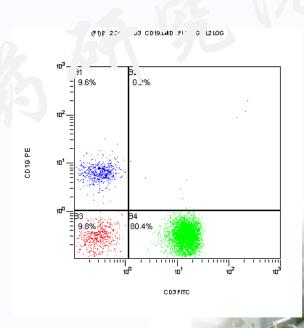
2.2.2 光学系统


②荧光信号

流式常用的荧光染料

488nm激光激发的荧光





- ③光学滤片组:利用"带通+二向色性"滤片,将各种波长的光逐一分开,识别收集(检测
-) 这些荧光信号, 指向固定的光电检测器。

不同的荧光素偶联抗体与细胞结合标记后,经流式细胞仪进行特异性检测。

2.2.3 电子系统

进行信号检测和分析

- ① 荧光信号由光电接收器(PMT)接收,转变为电脉冲信号,可分析电压 脉冲的高度、面积和宽度。
- ② 电脉冲信号经A/D转换器转换成数字信号
- ③ 数字信号传送到计算机,进行储存、作图、统计分析。

3. 流式实验3部曲

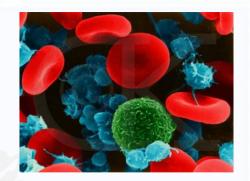
3.1 第一部曲:样本的制备

3.1.1 单细胞悬液的制备

样本浓度要求:建议105~106个/ml

a) 血样本

样本要求:EDTA、肝素、柠檬酸钠抗凝全血凝血、溶血样本应当弃用。


◆ 白细胞样本:需裂解去除红细胞

裂解液的选择:甲酸作用强,适用于一般检测;氯化铵作用温和,适用于低含量细胞

注意:温度过低会影响裂解效果

◆ 红细胞样本: PBS或生理盐水稀释1000倍

◆ 血小板样本:<mark>避免使用肝素抗凝血,PBS或生</mark>理盐水稀释20倍

b) 培养的细胞

◆ 一般处理:消化分散成单细胞,过200~300目滤网去除细胞团块

◆ 易聚集的细胞:可在缓冲液中加1~3%的小牛血清或BSA或0.05%EDTA

c) 组织细胞

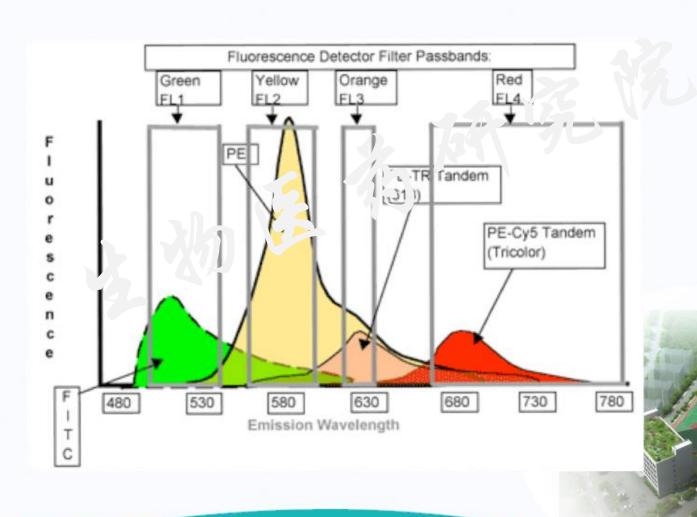
- ◆ 脾细胞,在缓冲液中将血洗净,剪成数块,直接在300目滤网上研碎过筛。
- ◆ 肝、肾组织及结肠癌等富含实质细胞的组织,于缓冲液中充分剪碎,细胞分散于缓冲液中,过100目滤网,再过300目滤网。
- ◆ 肺、肠粘膜等结缔组织较多的组织,剪碎并用胰酶、胶原酶等消化分散。
- ◆ 骨、软骨、心肌、骨骼肌、脑组织等,可尝试机械剪碎及酶消化后于培养液中静置贴 壁分离细胞,但可用的细胞往往较少,最好进行原代培养。

3.1.2 样品的保存

- ◆ 外周血样本:在不处理的情况下于4度存放3~5天,仍可用于大多数表面分子标记检测。但 做细胞绝对计数应在24h内检测。
- ◆ 固定:低浓度的甲醛或多聚甲醛固定(<1%)可用于培养细胞或已分散成单细胞的组织来源样本的短期保存(<1周)。过高浓度的甲醛会影响抗原抗体结合及导致荧光淬灭,不适合流式检测。
- ◆ 长期保存:可参考细胞和组织的冻存(深低温或液氮)。
- ◆ DNA倍体检测:可用-20度预冷乙醇固定(终浓度>80%),固定时震荡逐滴加入,避免结块,1~2ml/样本,存放于-20度(>1月)

注意:已标记荧光的样本和对细胞活力有要求的样本应尽快检测,以免荧光淬灭及细胞活力丧

3.1.3 荧光染料标记


a) 荧光染料的选择

荧光素	中文名	激发光 波长	发射光 波长	基本用途
FITC	异硫氰酸荧光素	488nm	525nm	检测抗原
PE	藻红蛋白	488nm	575nm	检测抗原
PE-TxRed	藻红蛋白德克萨斯红	488nm	612nm	检测抗原
PerCP	多甲藻叶绿素蛋白	488nm	677nm	检测抗原
PE-Cy5	藻红蛋白-花青素5	488nm	670nm	检测抗原
PE-Cy7	藻红蛋白-花青素7	488nm	770nm	检测抗原
APC	别藻青蛋白	652nm	660nm	检测抗原
APC-Cy7	别藻青蛋白-花青素7	652nm	778nm	检测抗原
CFSE	羧基荧光素二醋酸盐 琥珀酰亚胺酯	488nm	518nm	细胞示踪
(E)CFP	(加强)蓝色荧光蛋白	408nm	475nm	指示蛋白
(E)GFP	(加强)绿色荧光蛋白	488nm	507nm	指示蛋白
(E)YFP	(加强)红色荧光蛋白	488nm	527nm	指示蛋白
Hoechst3 3342	烟酰己可碱33342	350nm	470nm	DNA分析
PI	碘化丙啶	488nm	620nm	DNA分析
DAPI	4',6-二脒基-2-苯基吲 哚	358nm	461nm	DNA分析
7AAD	7-氨基放线菌素D	546nm	655nm	细胞活性
Fluo-4		488nm	516nm	游离钙离子
DCFH-DA		488nm	525nm	活性氧检测

- ◆ 弱表达抗原选择较"明亮"的荧光素如PE
- ◆ 细胞内抗原检测优先选择小分子荧光素如 FITC
- ◆ 多色标记时注意尽量选择相互干扰较小的 荧光素组合。

b) 荧光检测通道之间的干扰。

e) 阴性对照的选择原则

目的:用于消除由于抗体非特异性与细胞结合而产生的背景染色。

- ◆ 如果不涉及抗体染色,阴性对照是未染色细胞,
- ◆ 如果用到抗体,阴性对照是同型对照。

同型对照的选择原则:

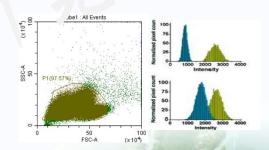
- ① 同种属来源
- ② 同抗体类型
- ③ 同荧光染料标记
- ④ 等量加入

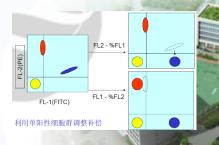
3.2 第二部曲:仪器的调节操作

QC

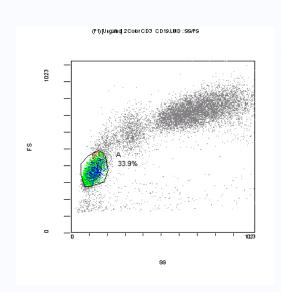
• 检查仪器状态是否良好

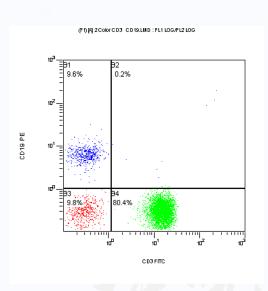
设门

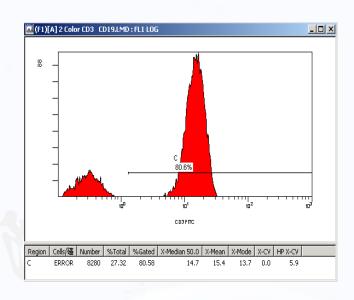

• 设门,确定目的细胞群


调补偿

• 单阳管调补偿,上样







3.3 第三部曲:数据分析

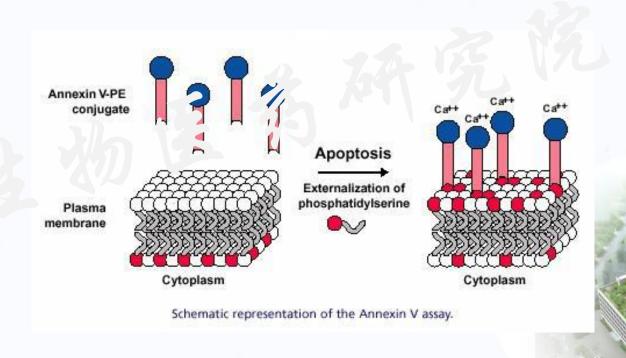
百分比——目标细胞占选定细胞群或所有细胞的比例

绝对浓度——目标细胞在样本中的浓度(cells/ul)

荧光强度——单个目标细胞上表达某一个蛋白的多少

变异系数——所有目标细胞表达某一个蛋白的离散程度

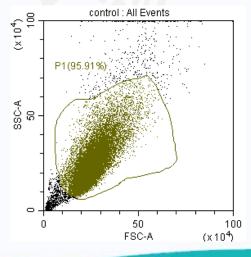
4. 应用举例

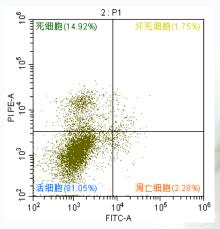

- ◆细胞凋亡
- ◆细胞周期

4.1 细胞凋亡的检测

Annexin V/ PI 双染法:

原理:细胞凋亡时细胞膜内侧PS(磷酯酰丝氨酸)外翻,可与FITC标记的Annexin V特异性结合,再同时用PI对细胞核染色,以区别凋亡与坏死细胞。

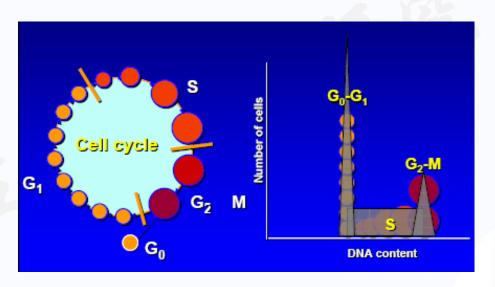



(1) 样本制备:

按照试剂盒说明书,制作样本。

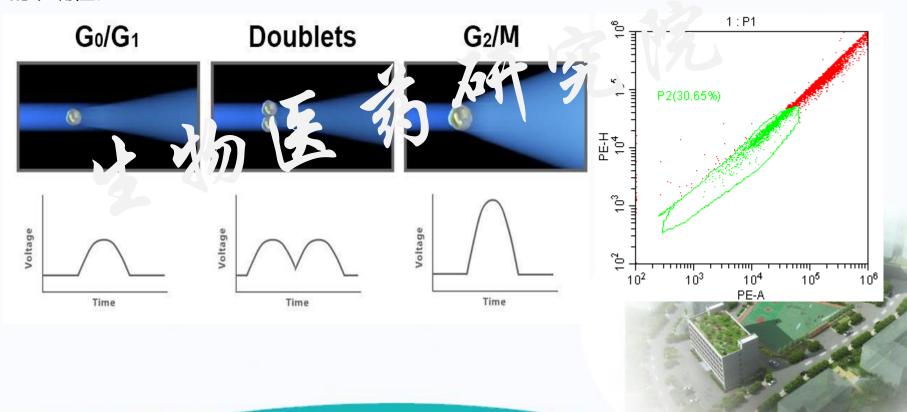
管号	管子类型	
1	双阴管	
2	PI单阳	
3	FITC单阳	
4	双染样品管1	
⑤	双染样品管2	

(2)流式作图,选目标细胞,调补偿,设门

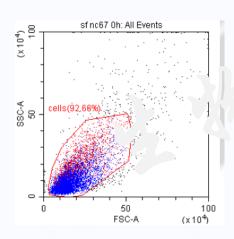


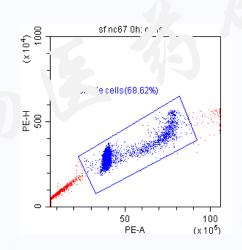
4.2 细胞周期的检测

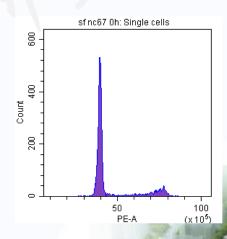
原理:在细胞周期的不同时期,DNA含量存在差异,用DNA染料(如PI)进行染色,可根据DNA荧光强度变化判断细胞所处的细胞周期时期。


常用染料: PI、DAPI、7-AAD、Hoechst DRAQ5......

去粘连体


由于细胞制备的问题(特别是非悬浮细胞),常常造成细胞分散不均匀,从而造成大量的聚集体形成。当2,3个细胞聚集在一起时即使用过滤的方法也难以除去,往往容易影响结果的准确性。





细胞周期检测步骤及结果:

步骤:流式作图,设门选目标细胞

最后的结果可用modfit、flowJo等分析软件拟合后得出各个样本不同分裂时期细胞的比例。

联系方式: 0719-8891759

地址: 科教楼813

谢谢!

